
N95- 28761

COOPERATIVE SOLUTIONS COUPLING A GEOMETRY ENGINE
AND ADAPTIVE SOLVER CODES

Thomas P. Dickens

Aerodynamics Configuration Computing
The Boeing Company

Seattle, WA

ABSTRACT

Follow-on work has progressed in using Aero Grid and Paneling System (AGPS1,2), a geometry
and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for

other codes, as first published in 19923. In particular, AGPS has been successfully coupled with
adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a
solution. With the coupling to the geometry engine, the new grids represent the actual geometry
much more accurately since they are derived directly from the geometry and do not use refits to the
first-cut grids. Additional work has been done with design runs where the geometric shape is
modified to achieve a desired result. Various constraints are used to point the solution in a
"reasonable" direction which also more closely satisfies the desired results.

Concepts and techniques are presented, as well as examples of sample case studies. Issues such as
distributed operation of the cooperative codes versus running all codes locally and pre-calculation for
performance are discussed. Future directions are considered which will build on these techniques in
light of changing computer environments.

INTRODUCTION

Current computing technology enables increasingly complex geometric configurations to be
analyzed and allows analysis at a much finer level of detail. Flow solvers must work with the
geometric definitions more closely to accommodate the level of accuracy desired. Rather than
building more sophisticated geometry capabilities into the solvers, which is a duplication of the effort
that went into the geometry code, a cooperative environment can be created which facilitates multiple
codes working together. This environment will use the specialized capabilities and knowledge of
each system, rather than investing the time and money to replicate capabilities in multiple codes plus
the incurred problem of diverging capabilities once they are duplicated. The application of the code
cooperation is needed in the geometry/solver combination due to the complexity and specialization
of each of the two fields. This coupling of codes is especially beneficial in adaptive solvers, and when
using solvers in a geometry-design mode.

In an aerodynamics design mode, a pressure solution is first generated for a geometric
configuration. This pressure solution is then examined and modified by an engineer to represent a
desired condition using a method of their choice. An area of the geometric configuration is selected
for modification and may have associated constraints imposed. The solver then systematically
perturbs the geometry while tracking the effects on the resulting solution. A new geometric
configuration is calculated based on the results of the perturbations. A solution is then run for this
new geometric configuration, which is then compared with the desired solution. This process is
iterated as required.

It should be pointed out that, in this scenario, the geometric configuration is paneled, and then the
resulting paneling is provided to the solver. The solver then perturbs the paneling, which represents
the geometric configuration, to achieve the desired solution. The assumption with the paneling is that
it is sufficiently refined to represent the actual surfaces within a desired tolerance. In these design
runs, when the paneling is modified to represent new geometry, the original tolerances used to

637

generatethepanelingmaynow be greaterthandesiredto accuratelyrepresentthe geometry.The
solveritselfdoesnotunderstandtheoriginalgeometry,nordoesit know theoriginalcriteriawhich
wentinto thepanelingdecisions.I haveseendesigncaseswhichgeneratedfairly sharpgroovesand
bulgesin surfaces,asseenin Figure 1. If the originalpanelingwasjust within a desiredcriteria
(chord-heighttolerancewith the geometryfor example)changesto the designregioncaneasily
generatepanelswhich,if testedbackagainstthe originalgeometry,areno longerwithin tolerance.
Thismayintroduceunwantedartifactsinto thesolutionwhichdegradetheusefulnessof theachieved
solution. Oncethedesignrunhasachievedatargetgeometrywhichsatisfiesthedesiredpressure,the
new geometricshapemust begeneratedin thegeometrytool (not a trivial task),a new paneling
created,anda solutionrunonthenewgeometryto testthemodifiedgeometry.

Figure1. Before(left)andAfter (right)Panelsof aStrut.

Anotherconcernis theuseof constraints within the solver. Localized constraints are used which
can constrain the resulting grid to fit within a curvature tolerance, for example, or to impose a
constraint to only allow movement in the positive surface-normal direction. Localized constraints are
the first step in the process, but they do not have the necessary influence on the global properties of
the configuration. Without more global constraints, local constraints can generate oscillations or
other undesired artifacts in the resulting paneling which are out of the scope of the local constraints
to "see".

The last step in the process is to create a new geometry loft which represents the modified panel
data: the resulting output from the design-mode solver. The input panels were originally generated
by discretizing the surface lofts within the geometry tool. The surface lofts are typically generated
from a series of airfoils in the case of wing-like surfaces, or station curves for body-like surfaces. It
should be noted that where two surfaces intersect, such as a wing-body intersection, the surface loft of
the wing typically extends into the body. The extracted paneling is only for the exposed wing
surface, the subrange area on the wing which is outboard of the wing-body intersection. The
modified panel networks which are returned by the solver are used as templates to generate a new
loft.

Several challenges occur here. There may be geometric shapes such as bumps and grooves in the
new panels which are located between the original airfoils used for the original loft. Additional
airfoils may be required for the new loft to sufficiently capture these shapes. But there are problems
with using too many airfoils; high frequency noise can be introduced in the loft. Another problem
is re-creating the parts of the loft that were not paneled, such as the part of the wing which is inside
the body. The original loft data may be used, but if there are changes required in this region, the
original data may not be useful. In this process you also wonder about all of the ripples in the new
panels: are they necessary to achieve the desired solution, or are they artifacts of the process and not
absolutely necessary? Once a new loft is generated, it is then paneled and processed again by the

638

solverwith thehopesof matchingthepreviouslyobtainedresultsachievedfromthedesignrun.

TERMINOI.X)GYOVERVIEW

To facilitate communicationwith a commonunderstanding,somefoundationdefinitions and
conceptsareoutlined:

Geometric Def'mition.-Geometry is defined by two criteria: data, and functions which utilize the
data. For example, a 3D surface is represented using a 2D parameter space. A function for
evaluating the surface will retum surface properties for a given parametric pair: D = F(S, T), where
the retumed data, D, is the data at the given S and T parametric location on the surface, and can
consist of the 3D spatial coordinates, derivative information, surface normal, and other associated
information. Higher dimensionality can be used to define geometry which would also be accessed by
the given function. A surface can be constructed through an array of 3D data points to yield a set of
data. For example, if the geometric form is a series of bicubic patches in 3D space, each patch will
have 48 pieces of data to define the physical points at the four patch corners, plus the parametric
derivatives with respect to S, T, and the ST cross derivatives. On top of this is the organization of the
multiple surface patches to the parent surface. The surface evaluation routines are synchronized with
the surface construction routines within a geometry tool. Without visibility of the methods and
equations involved within the evaluation function, other codes can only approximate the
interpretation of the geometry defined by the data. Additional complexity is added when the
geometry tool builds upon the geometric definitions with techniques such as subrange and trimmed
surfaces as well as procedural entities.

The key point here is that the data alone is not enough to accurately represent geometry. The
defined evaluation process, or geometry engine, to work with the data is also required. Two different
evaluation processes operating on the same data may not produce the same results. Thus, even if a
solver has the capability to work with geometric data rather than just paneling representation of that
data, unless the solver uses the same exact code as the geometry definition tool, the resulting
geometry as known to the solver will be different than the geometry as defined in the geometry tool.

The Paneling Burden.-In the current computational fluid dynamics (CFD) process, the following
tasks are performed: creating geometry, paneling the geometry, running the CFD code, and analyzing
the solution. The particular CFD code used here is a full potential code that uses a locally refined
rectangular grid which is generated intemally by the code. In terms of flow time, the paneling
process continues to be a bottleneck in the overall CFD process. Engineers currently can spend days
paneling a typical wing-body-strut-nacelle configuration, and the resulting quality of the CFD
solution is directly affected by the quality of the paneling. The engineer is burdened with the task of
ensuring that the paneling is detailed enough for the problems being addressed to achieve
meaningful results, yet not too dense to break the solver code or take too much time to run.
Common techniques are used to help automate the paneling process. Such techniques are based on
chord-height tolerance of the flat panel to the surface or other methods. The paneling process is not
a bottleneck if the task can be automated, such as by using AGPS command files written to handle the

topology of the configuration. 4

Another concem is in iterative adaptive solutions, where emerging details in the solution will
concentrate volume grids in areas of interest, such as shocks. The volume grids can generally be
easily refined to detail these areas of interest. However, where the volume grid meets with the
paneling, the flow code typically does a simple interpolation of the paneling to determine the
panel/field intersection. It is at this panel/field intersection where additional knowledge of the actual
geometry is needed. If the paneling in this region is not fine enough to accurately represent the
geometry to achieve a reasonable solution, the task must be redone with a modified panel. This
requires engineers to study solutions, to refine the paneling, and then rerun the codes. This is costly
both in time and money. Of even greater risk is that the effect of the nonsufficient paneling is not
realized and that an inaccurate solution is believed to be more accurate than it is. This is because the
CFD code deals only with discretized geometry (paneling) and not with the original surface lofts.
Again, the burden is placed on the engineers to understand the limitations of their paneling and to
interpret the given solution with the appropriate level of accurateness. Of course a given paneling

639

may be intended to show general tendencies and is not intended to be used for finer details.

AQP$ Overview.-While developed and used primarily for the preliminary design of aircraft,
AGPS is used throughout The Boeing Company (Boeing) for a variety of geometric tasks. This
Boeing proprietary program is a surface geometry system in which virtually any shape can be
modeled. The underlying mathematics include cubic and quintic polynomials and rational B-splines
for representing curves, surfaces, and solids. The interface consists of a structured programming
language with over 160 geometry-related commands, along with a mouse-and-menu-driven interface.
Higher-level command files can be constructed and used as a macro capability to do complex or
repetitive tasks very simply. Collections of command files are used as high-level packages to allow
users to accomplish complex tasks by following an interactive menu-driven session. Hundreds of
existing command files are included in the AGPS release, which runs on a variety of machines
including VAX, SGI, HP/Apollo, IBM, and Cray. AGPS has been coded to be machine and
architecture independent, and utilizes a dynamically allocated object data structure.

TRANAIR Overview.5-A full-potential, solution-adaptive, rectangular grid code for predicting
subsonic, transonic, and supersonic flows about arbitrary configurations, TRANAIR is used to
analyze complex geometric configurations in transonic flow. A locally refinable rectangular grid is
automatically constructed and is superimposed on the boundary geometry as described by networks
of panels. Surface-fitted grid generation is not required. The nonlinear discrete system is solved
using a preconditioned Krylov subspace method embedded in an inexact Newton method. The
solution is obtained on a sequence of successively refined grids.

GEOMETRY USE IN SOLVERS

There is an increasing trend to use solvers in a geometric design mode, in which the solver will be
modifying the geometry definitions. To successfully accomplish this, greater attention must be
placed on the geometry operations as driven by the solvers. There are two main directions to
accomplish this: additional geometric capabilities can be coded into solvers, or the geometry tool and
the solver can work together.

The geometric sophistication within solvers is limited. This is understandable and even expected;
their domain of expertise is flow solving, and one does not expect to have solvers as sophisticated as
dedicated geometry tools in the domain of geometry and geometric definitions and operations.
Incorporating geometric sophistication within solvers makes the solvers much more complicated, and
duplicates capabilities among various codes. Even if this route is taken, the geometric definitions will
not be exact unless the same exact code used in the geometric tool is also used by the flow solver.
The natural evolution for this path is to evolve the solver to also be your geometry tool, or to add
solver capabilities to your geometry tool. Each of these fields require specialized expertise and
generate extremely complex systems as they currently are. If a solver and geometry tool are merged
into a single code, the resulting code could be too complex to manage.

A logical altemative approach is to dynamically couple the solver code with the geometry code,
each working in a cooperative manner on the part of the problem which is its specialty. This
approach has advantages and disadvantages. The primary advantage is the ability to refer back to the
original geometric definitions. This is used for panel refinements as well as for moving the geometry
and repaneling the changed area. By definition, in this process the paneling will define the geometry
to the specified accuracy. Geometry changes will be transformed into new paneling which maintains
the desired accuracy in its representation. With the geometry tool used in the design process, changes
to the paneling can be applied to the loft process instead, which will then produce a modified loft.
New paneling is then generated from this new loft. Once the design process achieves an acceptable
solution, the loft which generated the paneling for that solution is already there. The problem of
creating a new loft to represent the results of the design process is eliminated.

The disadvantages to this approach are the requirement of enabling the codes to cooperate
together, as well as the performance overhead of the communications between the codes. Once the
direction to enable codes to cooperate is taken, relatively minor modifications can be done to the

640

codesinvolvedto accomplishthis task. This leavestheperformancepenaltyin the communications
betweenthecodesasthemajordisadvantage.

Comparedwith the altemativesof eitherworking in the currentparadigmor incorporatingthe
modificationsnecessaryto put sophisticatedgeometriccapabilitiesinto a solver(or the reverse),I
contendthattheadvantagesof couplingthesecodesstronglyoutweighthedisadvantages.

COUPLINGMULTIPLE CODES

Within Boeing,work hasbeendonein this direction. I haveaddedthecapabilitiesto AGPSto
allowvariouscooperationmethodsbetweencodes.Thiscooperationcanbesetup in two different
schemes,basedonwhichprogrammingunit (AGPSor anothercode)in thesystemis in control.

Extemal control,or whatwe call the master type of connection, allows another program to
connect to AGPS and directly interface with the AGPS command line input stream. The external
process also will receive all of the output from AGPS (Figure 2). In effect, the external master
program appears to AGPS to be a user interacting with the normal input and output capabilities of
AGPS. This capitalizes on a very successful feature of AGPS: the command-line interface. The
AGPS development team has recognized the importance of offering almost all of the capabilities
within AGPS in a command-line interface as well as a graphical user interface (GUI) point-and-click
interface. This feature allows repetitive tasks to be easily automated and repeated with little or no user
interaction required. Routines which initiate and terminate the controlled AGPS connection, as well
as send and receive data between AGPS and the master program, are provided by the AGPS
development team to allow this capability to be easily incorporated into the I/O system of a master
program. This feature allows an extemal program to easily assume the role of the AGPS user and to
have AGPS accomplish geometric tasks for the program.

There is a second level of master program access into AGPS. The external program can directly
invoke a set of AGPS internal subroutines which handle the geometry creation, modifications, and
interrogation within AGPS. The direct routine access capabilities are generally not used by extemal
programs; the command-line interface is the most widely used method to control AGPS via an
extemal program.

Figure 2. Master Program Using AGPS Capabilities.

The second scheme is to have AGPS in control. Up to nine extemal processes, referred to as
slave processes, can be dynamically invoked and connected to AGPS (Figure 3). A slave process is
spawned from AGPS, with AGPS remapping the standard-in and standard-out streams of the slave
process into pipes which are held by AGPS. This way the slave process does not need to be modified
in any way to allow it to be used as an AGPS slave process. This was a very important concept for the
general usefulness of the slave capability. If two communicating programs need to jointly agree on
an interface specification and protocol and need to be maintained with the knowledge of the other,
the interdependence between the codes may be unworkable. In addition, the coupling of a different
pair of codes will require modifications to both of them to allow them to communicate. With the
approach of mapping the standard-in and standard-out streams of the invoked process, the invoked

641

processdoesnot requireanymodifications.Any processor programavailableon the system can be
utilized as a slave process. This allows AGPS to have at its command an endless supply of dynamic
capabilities. This is used in production to provide added capability to AGPS, and to prototype new
AGPS capabilities without requiring modifications to AGPS.

Figure 3. AGPS Using Multiple Slave Programs.

Tradeoffs.-With the techniques of coupling two or more codes to cooperatively accomplish a
task, there are costs and compromises involved. On the positive side, the savings in development time
to incorporate major new capabilities are significantly reduced from months or years into a few hours
or days to access the capabilities through existing extemal codes. This provides the new capabilities
almost immediately when needed. Specialized expertise is not required to develop the capabilities
from scratch, and the capabilities are known to be mature and robust. On the negative side of code
coupling are performance issues. With two or more processes communicating, there will be an
overhead involved with physically nmning the programs. More important is the limited bandwidth
for communication between the processes and the sequential nature of tasks. These issues can be
addressed and minimized while still maintaining the general-purpose nature of the solution.

However, attaining the same performance as compared to a dedicated program is not achievable.
My feeling is that if the overall solution is no more than an order of magnitude slower, the
performance penalty is acceptable, at least for initial proof of concept purposes. The bottleneck of
the communication overhead can be minimized through the use of files to communicate large
quantities of information, using process-to-process communication primarily for control. Another
technique is to partition the task in ways that minimize the communication required and allow for
larger amounts of work to be accomplished for a given set of data. This can be combined with the
concem of sequential work by front-loading the known work to be done with an external system to
allow the extemal system to have as much of the work completed when the master system requires the
results. As demonstrated below, extemal tasks can be front-loaded and also distributed among
multiple machines to achieve more responsive tumaround.

642

CASESTUDY: TRANAIR AND AGPS

As a casestudyof thesetechniques,we will considerthe useof TRANAIR in a designmode
whichusesAGPSasa geometryengine.

Cray Y-M .,)

Figure 4. Coupling of TRANAIR and AGPS on the Cray.

The first implementation of the TRANAIR/AGPS coupling used both codes running
simultaneously on the Cray Y-MP (Figure 4). It should be noted that TRANAIR has been optimized
for the Cray architecture, while AGPS has not. Add to this the interpreted command-line nature of
AGPS which results in a very generalized geometry system, but a system which is much slower than
dedicated code to accomplish specific tasks. Code was added to TRANAIR to launch AGPS, and to
communicate the desired geometry tasks to AGPS. The algorithms involved to solve the geometry
tasks were implemented in AGPS command files which allowed easy development and modifications
to the algorithms without requiring subsequent changes to either of the two systems. TRANAIR
requested AGPS to perform a geometry task and then waited for AGPS to finish the task. AGPS
communicated the result to TRANAIR via a data file, which TRANAIR read. For a sample design
case using 40 design points, 80 solutions were required of AGPS for each iteration. Needless to say,
this was slower than implementing similar capabilities directly into TRANAIR. Each iteration using
AGPS took about a minute to complete, and then TRANAIR took a few seconds to digest the
information. A similar implementation coded solely into TRANAIR took a few seconds per iteration.
These results must be weighed with the fact that the AGPS solution was configured to run within a
couple of days while a TRANAIR version modified with similar capabilities took weeks (flow time) to
be available, and the capabilities were job-specific and hard-coded into the code.

Much was leamed from these experiments. A small change in TRANAIR was made which
launched the 80 AGPS jobs as soon as TRANAIR knew what those jobs consisted of--which was
about 10 minutes before TRANAIR required the results. This gave AGPS some lead time to get a
head start on the task. It was also noted that the initial conditions were known before the run was

even started, so the first iteration results could be pre-calculated by AGPS before the TRANAIR run
was initiated. During the process we were also able to gather metrics on the running of TRANAIR,
which allowed bottlenecks within the TRANAIR design-mode code to be discovered and optimized.

The next logical step in the experiment was to distribute the AGPS tasks to a local workstation
(Figure 5). Since AGPS is not optimized for the Cray architecture, wall-time performance on
workstation class machines was comparable to the shared Cray performance. Using a handful of
UNIX scripts and files for communications between the two machines, running TRANAIR on the
Cray and the AGPS geometry jobs on a workstation gave comparable results to running both codes
on the Cray. This has the added benefit of off loading the geometry task from the Cray which
allowed our Cray resources to be focused on the solver task. Even with the 10 minute lead time,
AGPS still could not keep up with TRANAIR's need for results when it required them.

643

Cray Y-MP TRANAIR 1

i o s a ,on1
Figure 5. TRANAIR and AGPS Coupled Across Different Machines.

We then looked at distributing the geometry task across multiple workstations. This was initially
done using UNIX scripts to launch remote AGPS sessions on predetermined machines and to assign a
predetermined set of jobs to each machine (Figure 6). A central machine was used to collect the
results and communicate them to the Cray. When this scheme worked, it worked well. We were able
to feed the results to the Cray fast enough to keep up with its demand; however, this scheme is quite
fragile in practice. With the list of machines predetermined, and the jobs on these machines
predetermined, if one machine was either unavailable or heavily loaded during the ran, the job would
fail due to an incomplete set of results. Some system-level glitches were discovered, such as the
inability to spawn remote jobs on the Cray with a large number of files opened. We finally tracked
this glitch into the system kernel on the Cray as a problem with the rsh command.

ICray Y-MP TRANAIR 1

_rkstation

:ribution

Logic

AGPS

;PS

Workstation 1

Workstation 2

;PS "*

3

AGPS

Workstation N
.J

Figure 6. TRANAIR with Multiple AGPS Coupled Across Many Machines.

We are currently working to refine these techniques and to offer them to the Boeing user
community in an easy-to-use manner.

644

CONCERNSAND FUTUREWORK

During this effort we discoveredvarious roadblocksand have identified areasneeding
enhancements.

Receiving Complete Files.-Three problems may occur in the transmission of files between the
various machines. One problem is the corruption of a file. This is rather rare due to the robustness
and error checking built into ftp and rcp. A second problem is the non-arrival of a file. This does
happen and can be caused by network problems, file-space problems, or code failure on the sending
machine. A third problem occurs rather commonly; the use of a file before the entire file is received.
There is no mechanism built into UNIX to make a file unavailable until it is complete. Various
techniques can be used to address this, such as including the checksum of the file as a field in the
name of the file. The receiving program will not open or access the file until the checksum generated
from the file matches the checksum in the filename. This has the added benefit of also checking for
corrupt files. Another method is for the sending machine to send the file with a temporary filename,
then, after transmission, to remotely change the name of the file. This should work in theory, but
subtle timing through the network can cause failure. The transmission can be completed and then the
file name changed, while actually the file is not completely available on the remote system.

Working with Dyni_mi¢ Ma,fhine/Network Loadin_.-At this time, work is being done on a C
program which will dynamically determine the health of a given set of machines on the network and
issue geometry tasks to be solved with AGPS jobs running on the subset of available machines. These
tasks will be monitored for completion and also for performance. Remaining jobs will be allocated in
a logical manner to ensure completion of the entire set of tasks as quickly as possible as well as the
ordering of the results received. Tasks may be reissued on top performers if the assigned machine is
not responding in a timely manner, or if the resulting files are not complete. This approach will offer
many improvements. Most failures in the system can be recovered from during a run, including a
node being unavailable, a node being too heavily loaded with other tasks, network failures, and file
corruption. Problems can still occur if the central machine coordinating the distributed effort goes
down, loses its network connection, or is too heavily loaded. Preliminary testing of this capability
looks very promising.

SUMMARY

Benefits of using AGPS for geometry_ tasks.-It has been demonstrated that there are a variety of
benefits in coupling two or more specialized programs together in a cooperative manner. These
benefits must be weighed with the costs incurred to determine the appropriateness of this technique
for a given environment and problem. The costs include both development costs and run-time costs.
There will be a development effort involved to set up the programs for cooperative communication.
Doing the development changes in a general-purpose manner, and implementing the main capability
in a key central program which does not dictate changes in other programs, is highly favorable. The
run-time costs include the overhead of running multiple codes and running codes not optimized for a
particular task. This results in both higher CPU usage costs as well as longer wall-time tumaround.
These costs can be minimized by partitioning the problem. Benefits include the rapid availability of
new capabilities, use of capabilities without requiring extensive code development, gaining access to
specialized code without duplicating or reproducing the code, and immediate access to robust, mature
code.

Easy-t0-¢hange tasks (command-file driven and dynamically accessed capabilities).-By using the
AGPS command language to accomplish the geometry tasks, algorithmic changes to the command
files can be incorporated without requiring changes to any compiled source code. This allows very
rapid tumaround of modifications to the geometric algorithms. In addition to production work, this
facilitates rapid prototyping of new capabilities without requiring the system to be modified and
rebuilt. The expertise needed to work in this environment does not require an expert with the
internals of either code.

Work is done on the actual geometry, in the defining system of the geometry.-Refinements made
at the request of the solver can be made to the actual geometry, rather than using extracted panels and

645

approximatingthedefininggeometry.As geometricchangesaremade,effectsto thesurfacescanbe
realized and used. Dynamic refinements to the paneling is possible to accommodate areas of interest
as the solution evolves.

AGPS has the tools to work with global constraints/conditions.-Using the capabilities in a mature
geometry system provides a much richer set of offerings than is available as add-on capabilities in a
solver. These offerings are also proven to be reliable due to widespread use for other applications
over time, while new code added into solvers will not be mature or widely tested. Many years of work
have gone into the geometry system, which results in a system which is fine tuned to work with
geometry, both on a local scale and in a global scale. This global understanding of the geometry,
and the ability to work with the geometry in this manner, allows better constraints to be imposed on
the solution which will lead to more usable solutions.

Changing loft definitions in the design mode.-By using AGPS to dynamically modify the loft
definition during a design run, the problem of creating a new loft based on a set of modified panel
networks is eliminated. The cost to run a solution for the new loft is also eliminated. The result of

the design run is a new loft rather than modified panel networks.

_-The techniques presented here are appropriate to be applied in a general manner to
numerous other applications and should not be limited to CFD solvers and geometry codes.
Candidate applications are those where two or more specialized codes working together can yield a
cooperative benefit.

ACKNOWLEDGMENTS

I would like to thank Arvel Gentry for his shared vision and his long hours using and evolving
these techniques. I also appreciate the cooperation and knowledge from the TRANAIR development
group and the other members of the AGPS development group.

REFERENCES

1. D. K. Snepp and R. C. Pomeroy, "A Geometry System for Aerodynamic Design,"
AIAA/AHS/ASEE Aircraft Design, Systems, and Operations Meeting, AIAA-87-2902, September 14-
16, 1987.

2. W. K. Capron and K. L Smit, "Advanced Aerodynamic Application of an Interactive
Geometry and Visualization System," 29th Aerospace Sciences Meeting, AIAA-91-0800, January 7-
10, 1991.

3. T. P. Dickens, "Technique for Using a Geometry and Visualization System to Monitor and
Manipulate Information in Other Codes," Software Systems for Surface Modeling and Grid
Generation, NASA Conference Publication 3143, April 28-30, 1992.

4. A.E. Gentry, "Requirements for a Geometry Programming language for CFD Applications,
Software Systems for Surface Modeling and Grid Generation," NASA Conference Publication 3143,
April 28-30, 1992.

5. F.T. Johnson et al., "TRANAIR: A Full-Potential, Solution-Adaptive, Rectangular Grid Code

for Predicting Subsonic, Transonic, and Supersonic Flows About Arbitrary Configurations," Theory
Document, NASA Contractor Report 4348, December 1992.

646

